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Abstract 

The theory of measured foliations which is discussed in Part I in connection with the train 
tracks and meanders is shown to be related to the theory of Jenkins-Strebel quadratic differentials 
by Hubbard and Masur (Acta Math. 142 (1979) 221). In this work it is demonstrated that this 
formalism not only provides the adequate description of defects and textures in liquid crystals but 
also is idealy suited for study of 2 + 1 classical gravity which was initiated in the seminal paper 
by Deser et al. (Ann. Phys. 1.52 (1984) 220). Not only their results are reproduced but, in addition, 
many new results are obtained.In particular, using the results of Rivin (Ann. Math. 139 (1994) 553) 
the restriction on the total mass of the 2 + 1 Universe is removed. It is shown, that the masses can 
have only discrete values and, moreover, the theoretically obtained sum rules forbid the existence 
of some of these values. The dynamics of 2 + 1 gravity which is associated with the dynamics of 
train tracks (Part I), is reinterpreted in terms of the emerging hyperbolic 3-manifolds. The paper 
provides a concise introduction to this topic. The discussion of some connections of the obtained 
results with related physical problems is also provided. These include (but not limited to): string 
theory, classical and quantum billiards, dynamics of fracture, statics and dynamics of dislocations 
and disclinations in solids, etc. 0 2000 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

In the previous paper [l] (Part I) we have discussed some aspects of the theory of measured 

foliations for 2-dimensional surfaces without providing sufficient mathematical proofs. 

In this part we would like to provide a self-contained mathematical justification of the 
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obtained resultsour presentation is deliberately pedagogical enough to be accessible not 
only to the experts on gravity but to the interested readers in the areas of condensed matter 
physics. 

The theory of measured foliations is mathematically connected with the theory of quadratic 
differentials as was demonstrated by Hubbard and Masur [2]. Therefore, we mainly will 
concentrate our efforts on this connection. The usefulness of the measured foliations for the 
description of defects and textures in liquid crystals was recognized for some time [3,4]. 
More recently,the usefulness of quadratic differentials for description of bosonic strings 
was recognized in Ref. [5]. Additional nontrivial results for strings which involve quadratic 
differentials were obtained in Ref. [6]. Here we argue that the quadratic differentials not 
only naturally occur in 2 + 1 gravity but, in Section 7, we indicate that they may also be 
helpful in the theories of motion in classical and quantum billiards, theories of elasticity 
and dynamics of fracture, etc. In Section 2 we provide an auxiliary introduction to the 
isoperimetric inequalities. Although the existing monographs on quadratic differentials do 
not explicitly contain this information [7,8], nevertheless, they assume that the reader is 
familiar with it. We believe, that the isoperimetric inequalities provide the most natural 
background necessary for understanding of the physical meaning of quadratic differen- 
tials. Although most of the results presented in this section are known, they are scattered 
in the literature and this circumstance, we feel, justifies their presentation in this paper. 
In Section 3 these results acquire new meaning when we discuss essentials of quadratic 
differentials. In the mathematical physics literature there is already a good treatment of this 
topic, e.g. see Ref. [5], nevertheless, we feel, that our presentation could be considered as 
complementary. Our discussion in this section is subordinated to our intention to use the 
quadratic differentials in the theory of liquid crystals and gravity. Applications to liquid 
crystals are discussed in Section 4. The results of this section are aimed at explaining the 
physical meaning of quadratic differentials in terms of known (to physicists) results from 
differential geometry of surfaces with singularities. We also provide some proofs in sup- 
port of the results discussed in Section 5 (Part I). In Section 5 (Part I) the surface energy, 
Eq. (5.3), was used in calculations without mathematical justification. Next, in Section 5 of 
this part of our work we discuss applications of quadratic differentials to 2 + 1 gravity. The 
presentation of this section is strongly influenced by the seminal work of Deser et al. [9]. 
We reanalyze and extend their results using known in mathematical literature connection 
between the quadratic differentials and conical (surface) singularities [lo]. We reobtain 
this connection in a way somewhat different from that given in Ref. [lo] and then, we 
extend this connection with help of recently obtained more comprehensive mathematical 
results by Rivin [l 11. This allows us to remove the restriction on the maximal total mass 
of 2 + 1 Universe which follows from the results of Ref. [9]. Using the results of Hopf 
[12] we argue that the masses in such Universe should take only discrete values. That is, 
already at the classical level, we obtain a sort of quantization condition for masses. The 
results of this section are elaborated in Section 6 where more advanced topics are briefly 
discussed. In particular, we argue that not only masses should be quantized but, in addi- 
tion, the obtained mass spectrum is subject to some selection rules which forbid existence 
of particles with certain values of quantized masses. This result follows directly from the 
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theory of quadratic differentials [ 131. We also briefly study the effects of inclusion of the 
cosmological term into Einstein’s equations of 2 + 1 gravity at the classical level from 
both mathematical and physical points of view. This leads us to the connection with the 
nonperturbative treatment of bosonic string theory developed by Takhtadjian [ 141. While 
in Part I (Section 4) we had developed theory of measured foliations based on the train 
tracks here, we provide (in Section 6) connections of this theory and the theory of Te- 
ichmuller spaces in order to clarify the physical processes responsible for the topology 
nonpreserving moves for train tracks which are depicted in Fig. 24 (Part I). These pro- 
cesses are responsible for phase changes (reducible, periodic, pseudo-Anosov) discussed 
in Part I. Finaly, we briefly discuss how the motion in Teichmtiller space is related to 
the evolution in the Minkovski spacetime. This treatment is complementary to that de- 
veloped by Moncrief [15] and serves to sketch the connections between 2 + 1 gravity, 
hyperbolic 3-manifolds and the theory of knots and links (for some additional gravity- 
nom-elated physical applications of the theory of knots and links, please, consult Ref. [ 161). 
Some important auxiliary results related to knots/links and the hyperbolic 3-manifolds are 
presented in Appendix A. This is motivated by the fact, that from the mathematical stand- 
point, the existence of knots and links in 2 + 1 gravity is by no means self-obvious. In 
the main text we provide sufficient arguments in order to demonstrate the existing dif- 
ficulties. In Appendix A we provide some sketch of very recent mathematical results in 
support of the existence of knots and links in 2 + 1 gravity. Our exposition of mathematical 
results related to hyperbolic 3-manifolds is rather terse (unlike other subjects which we 
treat with sufficient details). Nevertheless, it is included in this paper since it is logically 
connected with the rest of it. We plan to return to these more advanced subjects in future 
publications. 

Related physical problems which could be treated by the methods developed in Parts I 
and II are briefly listed in Section 7. These problems include (but not restricted to): classical 
and quantum billiards, dynamics of fracture, dislocations in solids, Temperley-Lieb algebra 
related to meanders and its connection with the invariants of 3-manifolds, etc. 

2. Some important isoperimetric inequalities 

Consider a closed simple (without self-intersections) planar curve C of length L and let 
A be the area which is enclosed by C, then 

L2 2 4nA, (2.1) 

where the equality holds only for a circle. Physical applications of this inequality had been 
recently discussed in Ref. [ 17,103]. Here, we are mainly concerned with the methods of 
proving the inequality (2.1). 

Since analytically the length L is given by 

(2.2) 
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and the area A is known to be given by 

s 

b 
A=- dv$, (2.3) 

a 

we can use a simple identity (obtained with help of parametrization: T = (2n/L)s) 

in order to obtain 

L2-4nA=2n121 dT[($)2+(g)2+2Y$] 

=2n127 dt ((2) +y)1+2rri2= dt [($)2 

Hence, to prove the inequality (2.1) we have to prove that 

- 

(2.4) 

Y2 . 1 (2.5) 

(2.6) 

This, however, may or may not be the case, e.g. if y = const the above inequality certainly 
fails. It is rather easy to prove [ 181 the following theorem. 

Theorem 2.1. If y(t) is a smooth function with period 2n and ifs,‘” dty (T) = 0, then 
the inequality (2.6) holds and becomes an equality if and only if y(r) = a cos T + b sin T, 
i.e. when the trajectory is a circle. 

The above result (2.1) can be extended for the case when the curve may have self- 
intersections [ 191. We are not going to need this case, however. Instead, we shall consider 
the extension of this result to the nonflat surfaces. In the case of a sphere of radius R, it 
could be shown [20] that 

L2 > 4nA - $ (2.7) 

with equality holding only for a circle on the sphere. In the case of a pseudosphere (surface 
of constant negative curvature) of radius R = i, i = fl, we obtain, instead of (2.7), the 
following result: 

L2 
T >A+4n. 

Obviously, if (2.8) holds, then the inequality of the type given by (2.1) holds as 
Beacause of this, following Ahlfors [21], let us define the extremal length h(r) via 

(2.8) 

well. 

(2.9) 
L2(P> 

h(r) = sup - 
p A(P) ’ 
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where r is some closed set of curves and p is the metric of the surface defined in such a 
way that 

k(P) = s PI dzl 
C 

(2.10) 

and 

AA(P) = 
J 

P= dx dy, 
A 

where A is the area enclosed by the contour C E I’ and z = x + iy. 

(2.11) 

Remark 2.2. The above definition of k(r) can be extended to open curves as well if we 
have su$aces with boundaries. 

To get a feeling of the above results, let us consider a rectangle d with sides a and b and 
let C be some curve which joins the opposite sides of the rectangle. Then, for any p 

s 

a 
p(x +iy)dx L k(p) (2.12) 

0 

and, from here, 

b a 

ss 
P dx dy 2 b&(p). (2.13) 

0 0 

With the help of (2.11) and (2.13) we obtain as well 

b2L$(p) 5 ab p2 dx dy = abAi(p). (2.14) 

The above result was obtained with help of the Schwarz-type inequality [22] 

p. ldxdy12 p & p2dxdyL dxdy. 1 =ab& p2dxdy. (2.15) 

The inequality (2.14) produces, in turn, 

a L.(P) 
b 2 AB(p) = A(r). (2.16) 

At the same time, if we choose p = 1 inside i? (and p = 0 outside), then Lc(p) = a 
and ab = A(p) so that h(r) 2 a/b. From here we arrive at the conclusion, that for the 
rectangle ri 

a 
- = h(k). 
b 

By definition, the modulus M = b/a = h-’ or, in general, 

(2.17) 

A(P) M(r) = inf - 
p @PI’ 

(2.18) 
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With help of M we obtain for the rectangle R the following result: 

Ai = 
ss R 

p2 dx dy 2 L$M > a2M = ab. (2.19) 

This happens to be the central result for the entire development as we shall demonstrate 
below in the rest of this work. To this purpose, let us discuss the related problem about 
calculation of the modulus M for the annulus 6, i.e. doubly connected region made of two 
concentric rings Cl and C2 of radius rl < r-2. By choosing the polar system of coordinates, 
we obtain, by analogy with (2.12), 

J%(P) i 
s 

2n 
p(reiP)r dq (2.20) 

0 

for any closed curve which separates Cl and C2. From here, 

2n LC(P) < s r -0 
pdv 

and 

This resembles very much (2.13) and, therefore, by analogy with (2.14) we obtain, 

Ls (P) In2 (z) I [- pdrdo]2. 
Again, using the Schwarz inequality, 

we finally obtain, 

L~$(P) In2 (z) ,,rln(z)& rpdrdp. 

This produces immediately 

L2(P> 2n 

A(p)< - Wz/rl) ’ 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

If we choose p = a/2nr (where a is length parameter which is determined in Eq. (2.31)), 
then (2.25) is converted into equality with L(p) = a and A(p) = (a2/2rr> ln(r2/rt). As in 
the case of a rectangle, we conclude, that 

M(i))=&ln ‘z . 
0 rl 

In accord with (2.19), we can rewrite inequality (2.25) as 

(2.26) 

A(5)) 2 Li(p)M(fi) 1: a’M. (2.27) 
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ib 

0 

Z 

2 L 

a + ib 

Fig. 1. Conformal mapping between the rectangle and the annulus. 

Let us observe that, actually, the rectangle l? and the annulus fi could be mapped con- 
formally into each other. Moreover, it can be shown [21] that h(r) is conformal invariant. 
This can be easily understood if we notice that for any conformal mapping z + z” we should 
have, by construction, 

p] dzl = ;I dZI 

and, accordingly, for the area dA 

(2.28) 

dA=&lxn dy=p*;dz* dZ=/S*;dir, d;. (2.29) 

The invariance of dA follows directly from the invariance of the length element dl = 
p] dz] as can be checked directly from Eq. (2.28) [5]. Clearly, the metric p determines all 
surface properties. In particular, the singularities of the metric correspond to some surface 
singularities (defects) as we shall demonstrate. 

In the meantime, let us consider in some detail the conformal mapping of the rectangle 
d onto 6 .To facilitate our understanding, it is useful to visualize the mapping, e.g. see 
Fig. 1. The mapping from f-plane (5) to z-plane (i) is being performed by the following 
equation: 

lnt 
Z=a2in. (2.30) 

It maps the annulus which is cut along the positive e-axis into the rectangle. The cut could 
be avoided if we convert the rectangle j? into a cylinder of height b (by identifying [0, ib] 
with [a, a + ib]). The periodicity is most explicitly seen by rewriting Eq. (2.30) in the form 

2inz 
e = exp ~ ( > a 

so that, obviously, e(z) = e(z + a). Taking into account Eq. (2.26) and using Eq. (2.30) we 
obtain, 

M(i))=&ln 1 , 
0 r 

(2.32) 
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where (1/2n) ln(l/r) = b/u. Using Eq. (2.27) we obtain, 

A(k) 2 a2A4 = ab, (2.33) 

which coincides exactly with the result (2.19) as anticipated. Finally, for an annulus fi in 
which some curve C connects the inner circle Cl with the outer circle C2 simple calculation 
shows [21]: 

L;(P) 1 r2 
<-ln - . 

A(P) 0 - 27r rl 
(2.34) 

Compare this with Eq. (2.25). If, as before, we choose r2 = 1 and rl = r then, by definition, 

2n a $f=_=- 
ln(l/r) b’ 

(2.35) 

so that A(k) 2 b*k = ab. 

The duality between the results (2.34) and (2.25) happens to be very important as we shall 
demonstrate in Section 4. In the meantime, we need to introduce the concept of a quadratic 
differential. This is accomplished in the next section. 

3. Some essentials about quadratic differentials 

Let us begin with Eq. (2.31).Using this equation we obtain the following sequence of 
results: 

d( = 2’“(dz - & = as - (dz)* = --- a* W>* 
a 2irr t (2X)2 c* . 

(3.1) 

The last expression represents the first example of a quadratic differential. More formally, 
we provide the following definition. 

Definition 3.1. Let z = f(i) be some coformal mapping of the domain fi onto D and let 
p(z) be some function with transforms as 

z = f(Z), (3.2) 

then the expression q(z)( dz)* is called quadratic differential. 

From (3.2) it follows, that this quantity is invariant with respect to mappings: z + 2, i.e. 

Ip(z)(dz)* = cp(Z)(dZ)*. (3.3) 

Eq. (3.1) represents just an example of general result given by Eq. (3.3). Comparison between 
Eqs. (2.28) and (3.3) suggests us to introduce the following definition. 

Definition 3.2. The differential I dw] = ]~P(z)~‘/*] dz] is called the length element 
(q-length) associated with ~0. 



A.L. Khobdenko/Journal of Geometry and Physics 33 (2000) 59-102 67 

Remark 3.3. (a) In terms of 1 dw 1 the length is just the usual Euclidean length; (b) p(z) 
can be identified, in principle, with I&z) ( ‘I2 but this association is actually formal as we 
shall explain in Section 4 . 

From the above discussion it follows, in particular, that 

1 . (dw>* = q(z)(dz12. (3.4) 

Suppose, that there is another W such that 

1 . (dW)= = p(z)( dz)2. (3.5) 

Then, clearly, W = fw + const. Moreover,by taking a square root of Eq. (3.4) we obtain, 

w = Q(z) = 
s 

G dz&%i. (3.6) 

From here, we obtain as well 

2=&G. (3.7) 

This is the differential equation on the complex plane or on the Riemann surface, etc. The 
flow lines of this equation were used extensively in Part I of this work. Now, we would like 
to provide some additional details. To this purpose, let us consider quadratic differential of 
the type 

2 

z?dz)=, 

where n is some integer (n > -1). Use of Eq. (3.6) provides us with the result, 

7JJ = Q(z) = p+=y 

or 

(3.8) 

(3.9) 

Eq. (3.9) is a typical example of a conformal mapping. For such mapping, with respect to 
the origin of z-plane, the whole z-plane is subdivided into sectors (n 1 - 1) 

2Tc 
-k < argz i 
n+2 

--$$k+l), k=O,l,..., n+l, (3.11) 

such that when arg z covers one of these sectorsthe resulting image covers either the upper 
or the lower w-plane. If we consider the set of parallel lines(paralle1 to Re w axis in w- 
plane), Im w = an, a = const, n = 0, 1,2, . . . , these parallel lines go into “parallel 
lines” in one of the sectors of z-plane so that for the Y-type singularity we obtain the result 
depicted in Fig. 2. In the case of a thorn, n = - 1, and we have the mapping of the whole 
z-plane (with cut along x 2 0 axis) into the upper w-plane. The horizontals in w-plane 
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Fig. 2. Conformal mapping between w and z planes which explains how Y-type singularity can be built out 
of “flat bricks”(rubber bands). 

Fig. 3. Conformal mapping between w and z planes which explains how thorn can be built from the “flat 
brick” (rubber band). 

go into the “horizontals” in z-plane as depicted in Fig. 3. Straightening of the flow lines 
explains the reason of the word “measured foliations” introduced in Part I (e.g. see Fig. 2 1 of 
Part I). From the examples of the previous section it follows, that the singularities producing 
poles of order > 2 are not acceptable since if we identify ]&z)] with p2(z), then the area, 
Eq. (2.1 l), becomes divergent. This means, in particular, that the singularities depicted in 
Fig. 4 and known in the literature on liquid crystals [23] are matbematicaly ill-defined (see 
also Section 4 for additional details). The singularities for which n > 1 are permissible, in 
principle, and could be considered along the lines similar to that discussed in Part I (see 
Ref. [24] and Section 6). 

All mathematically permissible quadratic differentials can be brought into the stun- 

dard form as follows. Consider the mapping 

c(z)=exp(z@(Z)). (3.12) 
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xl = -3 

Fig. 4. Some of the “forbidden” sigularities. 

It is analogous to Eq. (2.31) and LQ is p-length of the quadratic differential Q(z). By 
analogy with Eq. (3.1), we have now 

L: (d02 
de = g&&)dzsu)(z)(dz)‘= --- 

(2n)2 42 
(3.13) 

The flow lines of such defined quadratic differential are the concentric circles (Fig. 4, Part I). 
This is a very important result since it allows to map an arbitrary mathematicaly permissible 
quadratic differential into the standard differential equation (3.1) (or (3.13)), so that the rest 
of the arguments related to the annulus and to the rectangle presented in Section 2 could be 
carried through without change. 

The above results can be broadly generalized now. To this purpose let us take another 
look at Eq. (3.12). What we actually have is a mapping from some Riemann surface R on 
which the quadratic differential “lives” into the surface of the flat annulus. Clearly, such 
mapping has some limitations. That is, it might as well be that the above mapping exist 
only for some ring domain 1 z 1 = p on R. The size of this domain determines the size of the 
annulus (or punctured disk). Without going into intricate details about the correspondence 
of these domains [25,26] we provide the following theorem. 

Theorem 3.4. Zf cp is quadratic differential which can have closed trajectories on R with 
respective lengths L,, , then its characteristic ring domains (i.e. the maximal ring domains 
swept out by the closed trajectories) cover R up to a set of measure zero. For a holomorphic 
quadratic d@erential on a compact surface of genus g z 2 the number of characteristic 
ring domains is at most 3g - 3. 

Proof. Please, consult Refs. [7,8,25,26]. 0 

Let us explain what all this actually means. It is well known [27], that every Riemann 
surface R could be decomposed into set of 2g - 2 pants. Conversely,if we have at our 
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2 
Fig. 5. The topological structure of every closed Riemann surface R is encoded in 3-valent planar graph 
G. With the help of this graph the pants decomposition can be found. The graph G provides the gluing 
prescription for such pants decomposition. 

disposal a set of 2g - 2 pants, we can restore R if we have a 3-valent planar graph with 
2g - 2 vertices and 3g - 3 edges which does not have free ends. 3g - 3 edges correspond to 
cylinders made when the pants are glued together. All this is depicted in Fig. 5. Since we have 
discussed already the problems which involve cylinders, e.g. see Fig. 1, it becomes clear 
why we have discussed them in the first place. Moreover, the union of closed trajectories 
in all ring domains effectively forms the union of closed geodesics (lamination, according 
to Definition 4.1. of Part I), one for each of these cylinders [27-291. And, when these 
geodesics are projected into an open disk D2 (as discussed in Section 4 of Part I), we obtain 
the projective meanders. 

With this background, we are ready now for some applications. 

4. Applications of quadratic differentials to textures in liquid crystals 

In the previous sections we have provided essential mathematical background related 
to quadratic differentials. Before we actualy use them (in this and the following sec- 
tions) it is desirable to provide some relevant physical background related to quadratic 
sdifferentials. 

4.1. Differential geometric meaning of quadratic differentials 

We have introduced the length, Eq. (2.28),and the area, Eq. (2.29), and identified I&z) I ‘j2 
with p and Iv(z) 1 with p2. This, however, is not enough. Here we shall explain why. 
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Although the Cat-tan method of description of surfaces is the most elegant and economical, 
moreover, it is indispensable for the discussion of general topological properties of surfaces 
[30], we shall avoid its use here for the reasons which will become obvious upon reading. 

Let r be the point in R3 which belongs to some surface S. Then, on one hand, r is just 
some 3d Euclidean vector with components rl, r2, and r3 and, on the other hand, because 
it belongs to the surface, its location on the surface could be given in terms of some local 
coordinates x1, x2 E S. With such defined r it is useful to construct two vectors dr/ dxr 
and dr/ dxz so that the induced metric of the surface is given by 

d12=Edx~+2Fdxldx2+Gdx;, (4.1) 

where E = (dr/ dxr)‘, F = (dr/ dxl) e (dr/ dxz), G = (dr/ dx2)‘. Introduce now the 
unit normal vector to the surface T via 

(4.2) 

then the second fundamental form of surface can be written as 

II=Ldx:+2Mdxldx2+Ndx;, (4.3) 

whereL = -(dT/dxl).(dT/dxr),M = -(dT/dxr).(dr/dxz)andN = -(dT/dxz). 

(dr/ dxz). 
In terms of the quantities just defined one can determine the Gauss (intrinsic) curvature 

K as 

K = k,k2 = 
LN-M2 

9 

and the mean (extrinsic) curvature H as 

H=;(kl+k2)= 
L+N 

T’ 

(4.4) 

(4.5) 

where the factor fi is associated with the first fundamental form which is brought into the 
conformal form 

dZ2 = i( dx: + dx;) (4.6) 

and kl and k2 are the principal curvatures of the surface. 
The displacement of the vector r along some curve which belongs to S is determined by 

the vector t, i.e. 

According to the rules of differential geometry of curves [ 121, we have 

dt 
-=/CT, 
dl 

(4.7) 

(4.8) 

where K is the local curvature of the curve which belongs to S. Depending upon how the 
line is drawn on the surface, K may vary from kl to kz (if kl > kz). The lines along 
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which K = kl (or k2) are called the principal curvature directions.They form an orthogonal 
network.The equation for the lines of principal curvatures is given by 

-Mdxf+(L-N)dxldx2+Mdx;=0. (4.9) 

Finally, the Codazzi equations (the consistency equations) could be written as follows: 

(4.10a) 

(4.10b) 

Introduce now the complex notations: z = XI +ix2 and take into account that for an arbitrary 
complex function F(z, Z) = F1 + iF2 one can write 

and another equation which is the complex conjugate of this. Then, following Hopf [4], we 
can introduce the Hopf differential 

L-N 
@(.7, Z) = 2 - iM. (4.11) 

It could be shown, that 

(4.12) 

That is the umbilic points (kl = k2) are zeros of @. With help of @ both of the Codazzi 
equations could be rewritten in the compact form given by 

a@ Aa 
- =5iH. ai 

Moreover, 0 itself can be also rewritten in more compact form as 

(4.13) 

(4.14) 

Let us consider now the change of parametrization of the surface, i.e. XI, x2 - xi, xi 
and let e = xi + ix;. Clearly, we expect 

dr ar de 
--- 

-G- a6 dz 
(4.15a) 

and 

dT aT dt 
- --. 

dz - at dz 

The combined use of Eqs. (4.14) and (4.15) produces 

@(z, Z)(dz)2 = @‘O, g)(d<)2 

(4.15b) 

(4.16) 
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which coincides with the transformation rule for the quadratic differentials (3.3). Hence @ 
is the quadratic differential! Moreover, the equation for the principal curvatures (4.9), can 
now be rewritten in compact suggestive form as 

Im[@( dz)‘] = 0 (4.17) 

which is equivalent to 

a-g@ +2arg(dz) = mrr, m = 0, fl, . . . . (4.18) 

This result can be conveniently rewritten as 

arg(dz)=y-;arg@. 

Let we have now the isolated umbilic (kt = kz) point p on the surface. Let us surround 
this point by some closed non-self-intersecting contour C and let us define the index of such 
point I (p) as 

Z(P) = $%rg(dz)), (4.20) 

where 6 means the variation of an angle when one is circling around C counterclockwise. 
Combining of Eqs. (4.19) and (4.20) produces 

Z(p) = -&S(arg@). (4.21) 

Assume now that locally @ can be written as 

@(z,Z)=CZn+.... (4.22) 

For the umbilic point n > 0 and fi is nonsingular for kl # k2. In additionfor kl # k2 we 
may have singular i (then we may have IZ < 0). To calculate the index of such singularity 
explicitly, we use a known fact of complex analysis [3 11, 

(4.23a) 

This produces, in view of Eqs. (4.21) and (4.23), 

z(p)=-;, n=fl,f2 ).... 

Definition 4.1. We shall call Eq. (4.23a) the Hopf quantization rule. 

(4.23b) 

This result produces exactly the indices known for the disclinations in liquid crystals, 
e.g. see Section 1 (Part I) or Ref. [23]. In the case of Y-type singularity, we have, according 
to Strebel [7], n = +l, which produces Zy = -i in accord with Fig. 2 of Part I. For the 
case of a thorn, we have n = -1, which produces ZZ = i again, in complete accord with 
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Fig. 2 of Part I and with Refs. [12,32]. The index for the rest of the singularities can be 
computed now analogously. 

Remark 4.2. Poincare [33] had originally considered singularities of differential equations 
of the form 

a(x, y) dx + b(x, y) dy = 0. (4.24) 

This is just the condition of orthogonality between the vector (a, b) and the curve ( dx, dy). 
By going around a closed curve C the direction of the vector (a, b) can change only by 2nn 
where n is an integer: Hence, by having half integer values for I is equivalent of not having 
vectorfields on the sugaces. This was actually stated in Part I (Section 1) without pro05 

4.2. Quadratic differentials and the textures in liquid crystals 

The fact that the textures in liquid crystals can be associated with measured foliations was 
recognized already by Poenaru [3] and Langevin [4]. The fact that the measured foliations 
are asssociated with quadratic differentials was explained by Hubbard and Masur [2]. Com- 
prehensive treatment of measured foliations could be found in Refs. [24,34,35]. Here, we 
only provide some details to make this identification complete. Before doing so, we would 
like to mention that the results below are equally applicable to any kind of “hyperbolic 
paper” (the terminology used by Thurston [36]) that is to any surface which may develop 
some crumples (see also Section 7). 

The free energy of distortion Fd in the case of nematics (in one constant approximation) 
is given by [37] 

3d = +? d3r(Vn)2, 
s 

(4.24) 

where the coupling constant l? has dimensionality energy/cm and is related effectively 
to the surface tension. The coupling constant I? exibits therefore noticeable temperature 
dependence. The unit vector n = n(r) is known in the literature on liquid crystals as 
director. On one hand, it is being used to describe the orientation of the individual molecule 
(usually very stiff, rod-like, organic molecule of not too high molecular weight) with respect 
to some preassigned fixed axis, on another hand, n in Eq. (4.24) is also called a director 
although it is no longer directly associated with the individual molecule. It is possible, 
however, to obtain the macroscopic distortion energy Fd from the underlying microscopic 
molecular model of nematic liquid crystal [38]. One is usually looking for a minimum of Fd 
under the additional constraint: n2 = 1 (the nonlinear sigma model [39]). In mathematical 
literature [40,41], the same problem is stated somewhat more precisely. Specifically, let 
cp(x = x/lx] = n, x E 24 cR3 (the domain U may coincide with R3). Let (Hi} be k disjoint 
compact subsets of U which are called “holes”. q(x) is the Gauss map cp : U -+S’ in the 
absence of holes. In the presence of holes, consider a spherical neighborhood around some 
particular Hi. If 40 is restricted to this neighborhood, then, with such restriction, cp defines 
a map S2 + S2. This map has a degree di E Z (integers, possibly including zero). If now 
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Q = U\(Uf=, Hi), then one is interested in finding the harmonic map p : Q --+ S2, that is 
to find 

E = inf 
s 

d3xWd2 (4.25) 
(PEE Q 

under conditions (i = 1 - k) 

E = q E (D; S2) 1 deg(cp; Hi) = di, 
s R 

The above problem can be formulated as well in two dimensions. In this case, one is talking 
about the harmonic maps from S’ to S’ . For di which are integers and satisfy the condition 
xi di = 0 the problem is solved in Ref. [42] with the result: 

E=1 
s 

d’x(v40)2 

= fnax didj In (a; - a,i 1 + boundary term + const., 
icj 

(4.26) 

where {a;} play the same role as (H;} in three dimensions. This result provides the desired 
Coulomb gas analogy used for the description of the defect mediated melting transitions 
in quasi-two-dimensional liquid crystals [43] via the Kosterlitz-Thouless type of transition 
which was discussed in Part I. From the same physical literature it is known, however 
[23,37,43] that the defects with integer d; are topologicaly unstable (at least in R3) and only 
those which have the half integer di are topologicaly stable. 

Remark 4.3. In two dimensions the degree di coincides with the index I. 

Remark 4.4. In two dimensions, in view of Remark 4.2, if we would have stable defects 
with integer and half-integer I we would run into problems since the textures originating 
from defects with integer I produce the orientable (vector) fields on the surface while the 
defects with half-integer I produce the nonorientable (line) fields. According to Strebel’s 
book [7], in this case one should consider the field of textures (foliations) coming from 
defects with integer index I as nonorientable linejeld. ’ 

The quadratic differential (3.1), describes the defect with I = 1 and is depicted in Fig. 4b 
of Part I, while the same differential with a + ia is also having index I = 1 and is depicted 
in Fig. 2 of Part I. The very existence of the Whitehead moves (Fig. 4, Part I), would be 
questionable should both integer and half-integer fields not be treated as the line fields [7]. 

As in the case of 2 + 1 gravity (to be discussed in Section 5), because of the nonori- 
entability of the line fields, there is no interaction between the defects but there is an energy, 
nevertheless. And this energy can be minimized. 

’ In the case of 2 + 1 gravity, (Section 5) such a remark is equivalent to saying that use of quadratic 
differentials allows to provide a formal unification of the description of electicity and gravity. Such unification 
is completely different in nature from that proposed by Kaluza and Klein. Please, see also Section 6.2. 



76 A.L. Khobdenko/Journal of Geometry and Physics 33 (2000) 59-102 

Indeed, in two dimensions we have n = (cos p(r), sin q(r)}, r = (x, y). This produces, 
instead of Eq. (4.24), the following result for the distortion energy: 

3d = ; 
s 

d2r(w12, (4.27) 
R 

where the domain 0 is analogous to that defined in Eq. (4.25) (adjusted for 2-dimensional 
case). The functional D[q] = (2/K)Fd is known in the literature as Dirichlet integral [44]. 
This integral has some remarkable properties summarized in the following theorems. 

Theorem 4.5. Let thefunction w = f(z) provide the conformal mapping of the domain Q 
onto fin* and let (p(x, y) = @(f(z)), then 

D[vl = 
ss R 

(cp,’ + cp;, dx dy = 
ss 

W,” + 1cr;) du dv, (4.28) 
.Q* 

where z = x + iy, w = u + iv and CJJ~ = acp/ax, etc. 

Proof. Indeed, taking into account that 

YJX = tiuux + @r,vxt 
(P4.=+lr,uy+Ilr,vy, 

and empoloying the Cauchy-Riemann equations 

(4.29a) 

(4.29b) 

U x = v,, vx = -uy (4.30) 

we obtain, 

40; + V; = (& + &) . <u; + u;,. (4.31) 

But the Jacobian J = u,vY - uYv, = uz + u; in view of Eq. (4.30). Hence, indeed, D[q] 
is conformal invariant. 0 

Corollary 4.6. Taking into account that 

(40; + cp;) dx dy = 41v,(z) I2 d2z (4.32) 

one has actually more: 

d2zlv,(z)12 = d*w. (4.33) 

That is the Dirichlet integral D[c,o] dejined in Q is equal to the area of 52* which is the 
image of the area 52 upon the conformal mapping w = f(z). 

Theorem 4.7. Let w = p(z) be the conformal mapping and 0(w) be the quasi-conformal 
mapping, that is, it is pe$ormed with help offunction @J such that 

d@=@,dw+@wdti, (4.34) 
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then 

D[@(co(z))l 5 ~mPo(Z)l~ 

where the dilatation factor k is defined by 

(4.35a) 

(4.35b) 

Proof. Please, consult Ref. [21]. 0 

In view of Theorem 4.5, our use of isoperimetric inequalities, discussed in Section 2, and 
quadratic differentials, discussed in Section 3, becomes almost obvious. Since D[q] has the 
meaning of an area, we can write as well (in view of Eq. (2.29)): 

D[vl = P*(V) dx A dyt (4.36) 

where now 

P*(V) = PO,2 + & (4.37) 

As for the length L,, it should be defined accordingly through ) dw I = pi dzl. Then, the 
isoperimetric inequalities discussed in Section 2 can be used immediatly. As for Theo- 
rem 4.7, we shall need it later, in Section 6, when we shall discuss some more advanced 
topics. For the time being, we need to discuss how to obtain p from p* given by Eq. (4.37). 
To this purpose, following Ref. [8], let us introduce the function g, = i (g, - ig,) and such 
that g = u + iv. Furthermore, let 

& = J@(Z)> (4.38) 

where the above equation defines @. Consider now 

]@I dxdy = (4.39) 

Consider as well the contour integral along some closed curve y E Sz given by 

4 
IWfidz)I = i f I(cpx - q) dx + bx + voy) dyl. (4.40) 

Y Y 

If the function g, is analytic (holomorphic), then the Cauchy-Riemann equations produce 
~~=(~~andu,= -px which leads us to the conclusion that 

IWfidz>I = I dd, (4.41) 

Y Y 

where I dq] = ]px dx + 4pY dy I. At the same time, the same Cauchy-Riemann equations 
applied to Eq. (4.39) produce 

D[vl = ((P,’ + IP;) dx dy = AD(P). (4.42) 



78 A.L. Kholodenko/Journal of Geometry and Physics 33 (2000) 59-102 

Although thus defined construction had provided us with the area An(p), the contour 
integral 

&Cl/) = P I44 (4.43) 

is not exactly the (p-length. It is called the height (the (o-length is just $Y /al 1 dzl). If we are 
looking for the extremum of (4.42), we cannot apply directly the results of Section 2 because 
we still have not obtained expression for q-length. To find out the geometric meaning of the 
height, it is sufficient to go back to Fig. 1, and to use Remark 3.1 along with Eq. (3.4). Since 
(dtu)’ in Eq. (3.4) is just the usual Euclidean length element, this means, that in terms of 
w we have to consider some square, e.g. like that depicted in Fig. 1, with Im w = b being 
indeed the height of the square. Eq. (4.41) reflects just this fact. Suppose, as in Fig. 1, we 
have the annulus and inside of the annulus we have a closed curve which touches both the 
inner and the outer circle. Then, the image of this curve in w-plane will also be a closed 
curve which touches the horizontals. This curve, naturally, will have some horizontal and 
vertical parts. If the height of the rectangle is b, then we obtain, 

(4.44) 

where @(u, 90) denotes any smooth curve which joins the horizontals and b, represents the 
contour. Multiplying both sides of (4.44) by a we obtain, 

(4.45) 

By squaring the above inequality and using the Schwarz inequality (analogous to (2.15)) 
we obtain, 

(4.46) 

Finaly, using Theorem 4.5, we obtain, 

ab p 
ss 

I$; + Cp$ dx dy. (4.47) 
R 

Of course, in the above derivation we had made a restriction of having just one puncture in 
L2. We have effectively surrounded the puncture (the critical point or the singularity) by a 
circle and considered the domain J2 as an annulus which was converted into the rectangle 
(as usual). Evidently, the generalization to many singularities should be obvious now. The 
combination ab can be written therefore as follows: 

ab = b2h = b2/M = a2M = a2/h?, (4.48) 
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where M is given by Eq. (2.26) and M = M-’ by Eq. (2.35). Using these results we can 
write our final expression for the distortion energy, Eq. (4.27), for a set of punctures: 

where a; is equal to I I (pi) I as can be seen from reading p. 14 (top) of Ref. [21] in view of 
the definition of the index, Eq. (4.23). Additional details related to the choice of domains, 
structure of trajectories of quadratic differentials, etc., could be found in Ref. [45] which 
does not contain any physical applications, however. Eq. (4.49) coincides with Eq. (5.3) 
(see also Eq. (2.5)) of Part I where it was given without proof. 2 

Remark 4.8. The existence of the hexagonally ordered phases discussed in Part I, e.g. see 
Figs. 8 and 10 of Part I, can be easily understood based on the results just obtained. Indeed, 
let us surround each defect with simple (non-self-intersecting) contour C and consider an 
area which is enclosed by such contour Now, the problem can be formulated asfollows: for a 
given perimeter length 1 of the contour CJind a minimal area A which such contour encloses, 
provided that the ObtainedJigure can cover the sur$ace S without gaps (i.e. tesselates S). 
For R2, S2 and R the results are well known [46]. In particular for R2 there are only 
two options: to have squares or to have equilateral triangles. For given perimeter length 1 
the area A of the triangle is smaller than that of the square. Hence, triangles tesselate R2 
under the most optimal conditions and this is the origin of the existence of the hexatic phase. 
For the alternative (physical) proof of the existence of the hexatic phase, please, consult 
Ref 1471. 

5. Applications to 2 + 1 gravity 

Although in the previous sections we have provided all necessary essentials needed for 
the description of classical 2 + 1 gravity, here we need some ramifications of the obtained 
results to facilitate uninterrupted reading. 

5.1. Conical singularities and quadratic differentials 

The connection between the conical singularities and quadratic differentials was discov- 
ered by Troyanov [lo]. His derivation is incomplete, however, as was recently noticed by 
Rivin [l 11. Because of this incompleteness, we would like to provide here an alternative 
derivation of Troyanov’s results in order to make connections with those of Rivin. 

The main idea of both works lies in the recognition of the fact that any 2-dimensional 
Riemann surface (and also 3-dimensional manifold [36]) admits consistent triangulation 

2 While this work was under refereeing, Prof. Michael Wolf (Rice U.) had supplied us his latest paper on 
“Measured foliations and harmonic maps of surfaces” (.I. Diff. Geom. 49 (1998) 437467). It provides much 
more comprehensive mathematical support of the results discussed above. 
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Fig. 6. The thin-thick decomposition of a hyperbolic surface. 

with help offlat Euclidean triangles. The curvature effects are concentrated then on vertices 
(cones) of the triangulated surface. If the surface is without boundary (closed), then the 
curvature singularities are well modelled by the cones on flat Euclidean backgrounds. If the 
surface has boundaries, then some of the singularities should be modelled by the punctured 
(truncated) cones [ 11,481. Surfaces which have negative Euler characteristics are hyperbolic 
and, whence, they represent an example of a “hyperbolic paper” (in Thurston’s terminology 
[36]). Since the hyperbolicity is always associated with tractrix-like conical-type surfaces 
(e.g. see Fig. 6) [17,36] and since such surfaces cannot be smoothly embedded into 3- 
dimensional Euclidean space, e.g. see Theorem 7.1 and Refs. [36,46], the very tip of the 
cone may be cut off. This creates a boundary (for an illustration, please, consult Ref. [48], 
especialy p. 98 and 99) since the cone is being truncated now. The Euler characteristic of 
such triangulated surfaces with truncated cones could be calculated with some effort [ 1 l] 
thus providing the major correction to the results of Troyanov. This correction, naturally, is 
affecting the results related to 2 + 1 gravity as we shall demonstrate shortly below. Consider 
now the following lemma. 

Lemma 5.1. Suppose we have the quadratic differential which has the injinitesimal length 
d12 given by 

dl= = lz128] dz]=, j3 2 -1, (5.1) 

then, there is a conical metric given by 

d12 = dr2 + r2 dt2 , Ojt ia2Jc, oicx 5 1, (5.2) 

so that (5.1) can be mapped into (5.2)provided that a! = 1 +/I and a = $12~~ with 13 being 
an angle of the cone. 
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Proof. We had seen already in Section 3, e.g. see Eqs. (3.9), (3.11) and Fig. 2, that the 
maping of the type w = z(n+2)/2 converts the sector 0 5 arg z ( 2n/(n + 2) in z-plane 
into the upper w half-plane. If we identify the sides of this sector, we shall obtain a cone 
with an angle 2n/(n + 2). Clearly, the metric d12 in w-plane is Euclidean, i.e. d12 = 
dx2 + dy2 = dr2 + r2 dqo2. When going from w to z-plane, we anticipate that the metric 
will have the form given by Eq. (4.6). To calculate the conformal factor i, let us consider, 
in the light of the just presented example, the transformation: 

x = ar@ cosacp, y = ara sin crq. 

Using these results, we obtain, 

dx = a&-’ dr cosav - ar’Yff(sinacp) dp, 

dy = aaror dr sinaqo + araa(coscup) dp. 

Based on these resultswe arrive at 

(5.3) 

dx2 + dy2 = a2a2r2@-‘)( dr2 + r2 dp2). (5.4) 

If we demand that a2a2 = 1, this then allows us to get rid of a. Next, we look at Eq. (5.1) 
andrecall that 1 dz12 = ti2 + dy2 = dr* +r2 dq2 and r = 1~1. Hence, in view of Eq. (5.4), 
we arrive at the result: 

a-l=#I. 

Furthermore, if we perform the following resealing: 

(5.5) 

t =aql, p = a-‘ra, (5.6) 

then the metric given by Eq. (5.4) is converted into that given by Eq. (5.2) with p % r. 
Clearly, it makes sense to choose a = 8/2n where 8 is the cone angle. Then, Eq. (5.5) 
produces 

8 = 2n(/5 + 1) (5.7) 

in complete agreement with the result of Troyanov [lo] where it was obtained in a somewhat 
different way. 0 

Corollary 5.2. By employing the results of Hopj e.g. see Eqs. (4.21) - (4.23) we obtain 
the index of the quadratic differential: 

Z(Pj) = 1 -cfj = 1 - $ = --pi. 

Corollary 5.3. The Poincare’-Hopf index theorem, 
once as 

x=c 1-Z . 
i ( > 2l-c 

(5.8) 

Eq. (1.9), Part I, can now be written at 

(5.9) 
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This result is also in agreement with that obtained in RejI [IO] where, again, it was obtained 
dc#erently. 

Since Troyanov is not using Hopf’s arguments explicitly, there is no restriction on I (pi) 
to be an integer or half-integer (e.g. see Definition 4.1) in his work. We also (only for a 
moment!) will suppress this restriction in order to discuss some known facts about classical 
2 + 1 gravity. 

5.2. 2 + 1 gravity and quadratic diflerentials 

In the system of units in which the speed of light c = 1, the Einstein’s equations are 
known to be [49] 

G;=&GT;; a,j?=l-4. (5.10) 

Here G is the gravitational constant, T; is the energy-momentum tensor and Gz is the 
Einstein’s tensor. 

G; = R; - +R8;, (5.11) 

R is the scalar curvature (in the case of two dimensions R/2 = K where K is defined in 
Eq. (4.4)) and R; is the Ricci tensor (obtained by contraction from the Riemann curvature 
tensor). In 2 + 1 dimensions in synchronous system of coordinates [50] the first fundamental 
form is given by 

dZ2 = - dt* + yfj dxi dxj , X = {XI 9 ~2) (5.12) 

(to be compared with Eq. (4.1)).The Einstein tensor Gz has only one nonzero component 

[9] Gi = - 4 R and, accordingly, Ti also has only one nonzero component T$ given by 

T+-c ' Wli-J2X - Xj. 
i a 

(5.13) 

Multiplying both sides of Eq. (5.10) by fi (where y is det yij) and integrating over the 
surface we obtain, 

(5.14) 

Since (1/2n) j’ d2xfiK is the Euler characteristic, x = 2 - 2g, of the surface of genus 
g, we conclude, that at least in 2 + 1 dimensions, the integrated Einstein equations coincide 
with the Poincare-Hopf index theorem, Eq. (1.9), Part I. Conversely, one can arrive at cor- 
rect Einstein equations starting from the P-H index theorem. In this case, by the way, 
there is no need to invoke the equivalence principle as it is traditionally done. Accordingly, 
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there is no need to worry about the justification of the Mach principle 3 since Eq. (5.14) 
is automatically in accord with it. This becomes especially evident in view of the mass 
quantization to be discussed below. 

By comparing Eqs. (5.9) and (5.14) we obtain at once 

C (I- 2) = C4Gmi 

i i 

which produces 

(yi = G = 1 -4Gmi. 

(5.15) 

(5.16) 

This result is in complete accord with the results of Deser et al. [9] where a somewhat 
different set of arguments was employed. Taking into account Lemma 5.1, we obtain as 
well the following result for the metric: 

dl* = n ]z, - zi (2Bi ) dz]*, (5.17) 

where 2#?i = -8Gmi in view of Eqs. (5.5) and (5.16). This result is also in agreement with 
that obtained in Ref. [9]. 

Consider now a special case of Eq. (5.14): g = 0. Then Eqs. (5.5) and (5.9) produce the 
following constraint on pi : 

c pi = -2. (5.18) 

Following Troyanov [lo], let us consider the change of variables in Eq. (5.17): w = z-l. 
This produces 

and 

n IZ - Zi 12Bi = n lWl-2Bill - WZij2pi = lW14n ]I - WZi(*“. (5.19) 
i i i 

Collecting all terms together, we obtain for the metric, 

dl* = n 11 - Wzi]2Bi 1 dW]*. (5.20) 

This result was obtained with account of the constraint, (5.18). Hence, the metric dZ2 is 
regular at infinity, w = 0, and maintains the same form as given in Eq. (5.17). This result 
should hold under the restriction that cxi cannot become negative in view of Eq. (5.2). This 

3 According to W. Pauli, “Theory of Relativity” (Dover, NY, 1981), the Mach principle is a postulate “that 
the inertia of matter is solely determined by the surrounding masses. It must therefore vanish when all other 
masses are removed. . .” (p. 179). 
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happens to be a very serious restriction. Indeed,according to Eq. (5.14) for the case of g = 0 
and just for one mass m we obtain, 

1 = 2Gm. (5.21) 

Using this value of mass in Eq. (5.16) we also obtain, 

~~=1-4G~~=-l. (5.22) 

This is not permissible, however, since it contradicts Eq. (5.2). Moreover, let g > 0 in 
Eq. (5.14), then we obtain, 

c mi 5 0, g > 0. (5.23) 

This result is, apparently, meaningless as well since we expect our masses to be nonnegative. 
So far, we have not imposed an additional constraint coming from the Hopf quantization 

rule, Definition 4.1. If we constrain our indices to the (half) integers, then we obtain the 
following mass quantization condition: 

(5.24) 

In the first case we have the degenerate case, a! = 0, according to Eq. (5.16), and in the 
second, we obtain, o = i which produces prong-type singularity, e.g. see Fig. 2 of Part I 
which has the index i. 

So far, we have not invoked more recent results obtained by Rivin [I 11. If we use his 
results then, instead of Eq. (5.9), we obtain (0, > 0): 

(5.25) 

where the first sum runs, as before, over the conical singularities while the second runs over 
the truncated (punctured) conical singularities. The above extension of Troyanov’s results 
in spite of its simple look is highly nontrivial and is not straightforwardly obtainable. 4 This 
result becomes especially useful if we would like to remove the restriction on the total mass 
of our “Universe”, e.g. for g = 0 using Eq. (5.15) we obtain, 

(5.26) 

in accord with Ref. [9]. To remove this restriction, let us consider, for example, how 
Eq. (5.24) works for a disk D* (evidently, S* can be obtained by gluing together two 
disks). If the “boundary sum” is ignored and only the nondegenerate cone angles are con- 
sidered, then, in agreement with the results of Part I, especially the appendix, we should 
have two thorn-like singularities using the quantization condition (5.23) and the fact that for 

4 Nevertheless, it could be found already in Thurston’s lecture notes (Ref. [20], Part I), e.g. see p. 13.20. 
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the disk x (D2) = 1. We can place yet another thorn on D2 if we use the “boundary sum” 
term. Without violating the constraint @ > 0 and requiring 6$/n to be a positive integer 
[ 131, we obtain the first nontrivial result : f3i /n = 2, which produces the desired - ; factor 
characteristic of Y-type defects (Fig. 2, Part I). The rest of the arguments used in Part I 
now can go through without change so that the restriction for the total mass can now be 
removed. Evidently, the extension of these results to higher genus surfaces becomes also 
possible without any problems. 

Remark 5.4. At thispoint it is appropriate to remind the reader that evenfor the Coulombic 
charges on S2 the topology requires only two charges in orderfor the P - H index theorem 
to be satisfied (e.g. see Section 1, Part I). This is completely analogous to the total mass 
restriction, Eq. (5.25), for the case of gravity. The electroneutrality requirement emerges 
naturally if we want to put the additional charges on S2. Moreover although we actually can 
put only the “sources” (‘I+“) and the “sinks”( “- “) on S2, the presence of these additional 
singularities (both having index +l) automatically creates the induced saddles (with index 
-1). Something similar occurs in the case of gravity because of an extra boundary sum 
term (Rivin (01; rather Rivin-Thurston) sum term). 

Remark 5.5. The need of such boundary term(s) has deep physical meaning (see “Note 
added in proof” at the end of this paper) and can be readily appreciated if one would like 
to use Eq. (5.14) for sueaces of genus g higher (or equal) than one. Since for g = 1 the 
1.h.s. of (5.14) is 0, we obtain: xi mi = 0 (“electroneutrality “) which is of limited use 
(photons, neutrinos, etc.) for gravity. For g > 1 we obtain ci mi < 0 and this is physically 
problematic as was noticed already by Einstein. 

Remark 5.6. In the original work by Troyanov [lo] there is no restriction on oi to be in 
the range between 0 and 1. It can be any positive integer or half-integer (Defmition 4.1). 
Under such conditions the relation given by Eq. (5.9) b ecomes correct for surfaces of any 
genus. Unfortunately, it cannot be used for gravity for reasons explained in the previous 
remark. 

Remark 5.7. It is useful to recall why altogether one should be concerned with surfaces 
of higher genus in the case of 2 + 1 gravity. Following Petrov [51], Einstein spaces are 
characterized by the condition: 

Rij = hgij. (5.27) 

Since the scalar curvature R = Rj = gik Rtk, the constant i in Eq. (5.26) can be eliminated 
with the result: 

Rij = ~gij, (5.28) 

where d is the dimensionality of space. Using this result, the Einstein tensor (5.11) can be 
rewritten as 

(5.29) 
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so that the covariant derivative of both sides of Eq. (5.10) produces 

G&, =O, (5.30) 

since T;Y = 0 by construction. Eq. (5.29) can be equivalently rewritten (with account of 
Eq. (5.2k)) as 

R,, = 0. (5.31) 

Ford # 2 we have to study spaces of constant curvature called Einsein spaces.For d = 2 
(that is for the fied time slice) we have no choice but to conclude that any 2-dimensional 
su$ace is Einstein space. But any 2-dimensional St&ace is the Riemann St&ace [46]. 

6. Some more advanced topics: a brief discussion 

6.1. Inclusion of the cosmological term 

Einstein’s equation (5.10) is written without the cosmological constant A term. This 
deficiency can be easily corrected. By multiplying both sides of Eq. (5.10) by fl and 
taking into account that [9] 

-fiG; = ;fiR (6.1) 

and R/2 = K (Eq. (4.4)) where, for the metric given by d12 = p] dz12, the Gauss curvature 
K is known to be [52] 

K = _Za21np 
pazaz’ 

Using these results along with Eqs. (5.10) and (6.2) we obtain, 

G + 5 expcp = -8ZG CmiS2(z - zi), 
i 

(6.2) 

(6.3) 

where p = exp(p. For A = -1 and 8Gmi = 1 the above equation coincides with the 
Liouville equation discussed by Takhtadjian [ 141 in connection with the nonperturbative 
approach to string theory. Accordingly, quantization of 2 + 1 gravity and 1 + 1 string 
theory are related to each other as was noticed by Witten [53]. Consider now the Liouville 
equation in the punctured complex plane that is in C\{zt , . . . , zn}, and let A be some 
positive constant. This case (actually corresponding to the punctured sphere S2) was treated 
in Ref. [54]. The authors of Ref. [54] were able to prove the following theorem. 

Theorem 6.1. The Liouville equation v2~ = - exp(2p) in the punctured complex plane 
+{oo) has solution. Near eachpuncture the solution is represented by q(z) = Bi In ]z -zi ]+ 
harmonicfinction. The constants Bi = (@i/2X) - 1 and satisfy the restriction: 

c Bi L -2 

i 
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and 

(6.5) 

Remark 6.2. Although the methods used in Ref [54] are different from those used by 
Troyanov [lo] and Rivin [ 111, the results are, actually, the same. It appears, therefore, that 
one can use their results to bypass the solution of the Liouville equation (6.3) (at least for 
the case of S2). 

In the light of this remark, one may think, that a similar proof can be obtained for A < 0 
as well. This is, however, not the case due to the results of McOwen [55]. His results are 
analogous to that discussed by Takhtadjian [ 141. Moreover,the same results were obtained 
much earlier by Nevanlina (e.g. see p. 249 and 250 of Ref. [56] and take into account the 
very minor typos, e.g. sign errors, etc.). The difference between treatments of A > 0 and 
A < 0 cases deserves further study. 

6.2. Some sum rules 

Although the Poincare-Hopf index theorem plays the major role in study of topology of 
2-dimensional surfaces, sometimes, additional ramifications are required. Let us begin with 
the following lemma. 

Lemma 6.3. Ifthe quadratic differential haspoles with the total orderp andzeros (including 
their multiplicity) of total order q, then for the Riemann sur$ace of genus g with n boundary 
components we must have 

p - q = 4 - 4g - 2n. (6.6) 

Proof. Consider first the case of n = 0. Then, taking into account Eqs. (4.21)-(4.23)and 
using the P - H theorem, Eq. (1.9), Part I, we obtain, 

Cni-C iZj =2(2-2g). 
POkS LemS 

Let us now have n boundary components. These can be obtained in the following way. 
Consider a sphere S2 with g handles and add one additional handle so that the genus of 
the surface becomes g + 1. Let us now squeeze the additional handle so that it breaks into 
two pieces leaving two punctures on S2. Hence, we obtain the correspondence: g % 2n. 
According to Jenkins [57] (see also Rivin [ll]) the boundary zeros are necessarily of 
even order. Therefore, instead of having 2(2 - 2g) - 4n we obtain the result (6.6). 0 

Because the quadratic differentials are transforming like tensors of rank 2, e.g. see 
Eq. (3.2), one may ask a question: under what conditions can they be formed out of the 
product of the abelian differentials? Following Ref. [13], for the Riemann surface R, let ki 
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be the order of zero at some pi E R and let, for example, ki = - 1 if at pi we have a simple 
pole (a prong-like singularity), etc., then each quadratic differential 4 is associated with the 
set of data (kl , . . . , k,; F) where E = +l if C$ is the square of the abelian differential and 
E = - 1 if it is not. One can prove the following theorem. 

Theorem 6.4. Let k = (kl, . . . ,k,;c)wherekiE{-l,1,2,...}and~=fl.Then,fora 
closed su$ace R there is 4 realizing k if and only if: 
(a) o(k)=Omod4,a(k)~-4ando(k)=~~~,k~; 
(b) E = -1 zfany ki is odd; and 

(c) (kl, . . . , k,,; E) # (4; -1) (1,3; -1) (-1, 1; -1) or ( ; -1). 

Proof. Please, consult Ref. [ 131. 0 

In case if we are interested under what conditions the pseudo-Anosov regime of surface 
homeomorphisms is possible, the theorem given below could be also of major importance. 
To formulate this theorem we have to provide the following definition first. 

Definition 6.5. The l-prong is thorn-like (a simple pole) singularity, the 3-prong is Y-type 
(a simple zero) singularity. The p-prong is the singularity with p arms [24]. The data set 
could be realized in terms of the prong numbers pi : (~1, . . . , pn ; E). 

Theorem 6.6. There is a pseudodnosov homeomorphism on R of genus g and n punctures 
realizing the data (~1, . . . , pj ; E) if and only if: 

(a) C!=,(pi - 2) = 4(g - I>, 
(b) E = -1 if any pi is odd, 

(c) (PI 3 . . .> pj; E) # (6; -I), (3, 5; -l), (1, 3; -1) or (; -1). 
(d) the number of indices I for which pi = 1 is less than or equal to n (that is the thorns 

may be “sitting” at the punctures). 

Proof. Please, consult Ref. [ 131. 0 

Remark 6.7. Theorems 6.4 and 6.6 provide some additional selection rules which should 
be taken into account when the mass spectrum of 2 + 1 gravity is of interest. They do not 
follow trivially from the P - H theorem. 

6.3. Connections with the theory of Teichmiiller spaces 

In this subsection we would like to discuss briefly under what physical conditions it is 
possible to anticipate the transitions from the periodic to the pseudo-Anosov regime.These 
results are complementary to that presented in Section 5 of Part I. 

We have encountered a glimpse of the Teichmtiller theory in Section 4.2. From it,we 
realize that we are in the domain of the Teichmtiller theory as soon as instead of the conformal 
mapping (for which 06 = 0) we are dealing with the quasi-conformal (for which @G # 0). 
The length element given by Eq. (4.1) can be brought into form [58] 

d12 = A(z, Z)] dz + p(z) dZl*, (6.7) 
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where 

A=;(E+G+2&5-?) 

and 

E - G + 2iF 

in notations of Section 4.1. At the same time, the length element given by Eq. (4.1) can be 
brought into the conformal form given by Eq. (4.6). Using Eq. (4.6), let w = XI + ix2 = 
u + iv. Then, we have as well, 

dZ* = p] dwj* = p( du* + dv*). 

If now w = w (z, Z), we obtain, 

(6.8) 

,dw,* = ,w,,* Idy + zdii2, (6.9) 

where, as before, w, = (a/az)w, etc. Comparison between Eqs. (6.7) and (6.9) produces 

A(z, Z) = plwz12* (6.10) 

This result coincides with Eq. (3.2) as required. Comparison between Eqs. (6.7) and (6.9) 

produces as well 

p(z) = 2. (6.11) 

This is known as Beltrami equation. If wz = 0, then p = 0 and the mapping is conformal. 
Looking at Eq. (4.35) we can write as well [29] 

k-1 
Iwu(z)l 5 - 

i+1 
< 1. (6.12) 

Either ]1_~l or F? determine the amount ofstretching the surface undergoes (this strething can 
include twisting as well). 

Let us now introduce notations: 

Hz) 5 PW (z) 

if II. is defined through Eq. (6.1 l), 

K = 1+ Ir-Lw(z)l lfk 
W 

1 - IPw(Z)I =l_k’ O<k<l. 

Using these notations one can prove the following theorem 

Theorem 6.8. Let q be some quadratuc difSerentia1 on R, then 

pw(z) = km 
Ivo(z)l ’ 

(6.13) 

(6.14) 

where $3 means the complex conjugate. 

Proof. Please, consult Ref. [59]. 0 
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Definition 6.9. A diffeomorphism (possibly with isolated singularities) f : R --+ R’ is 
admissible if 

Kf = K[f] < 00. (6.15) 

Theorem 6.10. In order for d@eomorphism to be admissible, we have to require 

W 0 fl = Mf112. (6.16) 

Proof. Please consult Ref. [60]. 0 

Corollary 6.11. Using Theorem 6.8 it is straightforward to show that if]p~.(z)] = k (see 
Eq. (6.14)) then ]pfOf(z)] = 2k/(l + k2). By combining Eqs. (6.13)-(6.16) we observe 
that if K [ f ] was initially > 1, then 

K]f 0 fl = KCf112 > KU1 > 1. 

Hence, successive dilatations lead to the successive stretching. This fact produces the 
most profound implications reflected in the following theorem and corollaries that follow. 

Theorem 6.12. Let q be associated with the admissible map f of R. If cp has only a finite 
number of critical points, then 40 has no saddle connections (critical trajectories running 
between these critical points). In particular every trajectory of q is dense in R 

Proof. Assume that after some iteration 

we had been able to fix all saddle connections. Then, on one hand, the length between 
them should remain the same as it was initially and, on another hand, in view of Eq. (6.16) 
the length has expanded by the factor of K”12 > 1. This contradiction proves the theo- 
rem. Consequently, every trajectory of ~0 is dense in R (otherwise, there would be saddle 
connections). 0 

Corollary 6.13. (a) Theorem 6.12 indicates that the existence of the meandritic labyrinths, 
discussed in Part I, is possible only tf the surface undergoes some stretching. Hence, the 
stretching is needed to destroy the reducible and periodic phases and to create the pseudo- 
Anosov phase. (b) If the Riemann sugace R has some boundaries which are pointwise 
jixed, then there is no admissible mapping in any homotopy class of self-mappings. That is 
the nonslip boundary conditions must be violated [61,62] in order for the pseudo-Anosov 
phase to become possible. (This is in complete agreement with Thurston’s “earthquakes” 
mentioned in Part 1). (c) The deformations of R may take place in real time. The evolution of 
such surface is described by the product R x [0, t] which is just some 3-manifold (see next 
subsection). This type of mantfold was suggested by Witten in connection with 2 + 1 gravity 
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[53] (without matter fields). Inclusion of the matter fields produces the pseudodnosov 
foliations evolving in real time. 

4.4. 2 + 1 gravity and hyperbolic 3-manifolds 

In this subsection and in Appendix A, without any pretence on completeness, we would 
like to mention several facts related to 3-manifolds. More detailed analysis would require 
a separate publication(s) and is left for the future. 

There are several ways to construct 3-manifolds. For the comprehensive treatment of this 
subject, e.g. see Refs. [63,64]. A quick introduction into this field is beautifully presented 
in Refs. [36,65]. In particular, following Ref. [65], we would like to describe one of the 
methods of constructing 3-manifolds which is naturally connected with the results of the 
preceding subsection. 

Let S be a compact surface (2 manifold), perhaps, with boundary. Let Z = [0, l] be the 
closed interval of real numbers from 0 to 1, Then, the Cartesian product S x I is 3-manifold 
with boundary. Consider now the bottom, i.e. S x (0}, and the top, i.e. S x {l), surfaces 
and let us glue them together. The operation of gluing is trivial if the top surface is the 
same as the bottom surface (that is if the bottom surface was parallel translated to the top). 
But, the situation becomes more intresting if one considers the surface homeomorphisms 
h : S --+ S’. These homeomorphisms are superimposed with the gluing operation in which 
each point (x, 0) E S x (0) of the bottom surface is identified with the corresponding 
point (f(x), 1) E S x (1) of the top surface. The result of such an identification is a new 
3-manifold which is actually a fiber bundle over the circle S’ (compare this discussion with 
that of Section 3, Part I) each of the fibers being the original surface at given instant of “time”. 
The fact that a thus constructed manifold is a fiber bundle is in accord with the discussion pre- 
sented in Thurston’s book (Ref. [36], p. 159) where some additional details could be found. 

Although we just had explained the construction of a typical 3-manifold, it is still unclear 
from this construction why this manifold has to be hyperbolic and why 2 + 1 gravity should 
be related to the hyperbolic 3-manifolds(as well as to knots and links). 

The connection between 3-manifolds and knots and links was established by Lickorish 
[66] and Wallace [67] who proved the following theorem. 

Theorem 6.14. Every closed, connected, orientable 3-manifold is obtained from S3 by 
removing mutually exclusive (but, perhaps, knotted and linked) collection of solid (framed) 
tori { Ti}, i = 1 -n, and then sewing them back into S3 in a different way. 

From Theorem 6.14. it is not immediately clear how 3-manifolds constructed by Dehn 
surgery methods used in the theorem by Lickorish and Wallace are related to the 3-manifolds 
constructed with help of fiber bundle methods. Leaving the answer to this question aside, 
e.g. see Ref. [20] of Part I for more details, we arrive at the following corollary. 

Corollary 6.15. Every closed, connected, orientable 3-manifold is a complement of some 
knot or link. 
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Having this corollary, the question arises: under what conditions the dynamics of 2 + 1 
gravity and /or dynamics of liquid crystals can be associated with knots/links or, altema- 
tively, with 3-manifolds (obtained with help of Dehn surgery or fiber bundle methods)? 

In 1970 Geroch [68] proved the following theorem. 

Theorem 6.16. If the open set N is globaly hyperbolic, then ifit is considered as a manifold, 
it is homeomorphic to c’3’ x R where cc3’ IS some 3-dimensional manifold and Va E R 
the product Cc3’ x {a} is the Cauchy surface. 

Remark 6.17. For the precise definition of the Cauchy sur.$ace, please, consult Ref [69]. 

Remark 6.18. Theorem 6.16. admits natural extension to the case of 2 + 1 gravity. In this 
case we have to replace C(3) with C(*) which is the Riemann sulfate of some finite genus. 
This is in complete accord with the results of Witten [53]. 

The products c(*) xR had been recently discussed in Ref. [70] (and references therein). 
In Ref. [70] no attempts were made towards physical applications. Below, and, in part, in 
Appendix A we shall provide some condensed summary of the results mainly associated 
with Ref. [70], which could be useful for description of dynamics of 2 + 1 gravity. 

Let us return to Theorem 6.16 in order to explain the meaning of words “globally hy- 
perbolic”. From Part I we know already about the hyperbolic Poincare disk D* and the 
hyperbolic half plane H*-model (Section 4). These results can be easily extended. For 
example, the hyperbolic H3-model can be defined by analogy with Eq. (4.1) (Part I): 

H’ = {(x, y, t) E R3, z = x + iy = C, t > 0) (6.17) 

and, instead of the open disk D2 model defined by Eq. (4.2), now we have to consider an 
open ball B3 with sphere Sk at infinity replacing the circle SL at infinity for D*. Instead of 
the Fuchsian groups SL(2, R)/(H), we need to use now the quasi-Fuchsian (or Kleinian) 
groups r generated by SL(2, C)/(M). 

Definition 6.19. A hyperbolic 3-manifold M is a quotient M = H3/f of the hyperbolic 
H3 space by the Kleinian group r. 

Theorem 6.20. Let h : S + S be the pseudo-Anosov homeomorphism. Then, the 3- 
manifold obtained by Jibering over the circle S’ is hyperbolic and has Jinite (hyperbolic) 
volume. 

Proof. Please, consult Ref. [70]. 0 

Corollary 6.21. (a) Since the volume of such designed 3-manifold isfinite, it may be as- 
sociated with knots (links). That is it can be shown that such manifold is a complement (in 
S3) of somejbered knot or link (Corollary 6.15). (b) If we take the hyperbolic 3-mantfold 
thatfibers over the circle, with$ber being a 2d surface, and unwrap the covering space by 
unwrapping the circle direction, then the volume of thus obtained manifold is infinite. 
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Proof. Please, consult (a) Ref. [36], (6) Ref. [36], p. 258 0 

Remark 6.22. The resultjustpresented is in accord with Ref [69] (e.g. see paragraph 6.4). 
That is, the physical space-time is noncompact and is a universal covering space of the 
space-time which is compact.To prove the existence of such compacti$ed space is highly 
nontrivial. Accordingly, the existence of knots and links in 2 + 1 gravity is not self-obvious. 

Remark 6.23. Theorem 6.20 is also in accord with Theorem 6.12. discussed earlier That 
is, the sutiace motion which is associated with stretching, which takes place in real time, is 
responsible for creating the hyperbolic 3-manifolds. 

Remark 6.24. The previous remark allows us to provide, yet another interpretation of the 
process of compacti@ation through the notion of the universal Teichmiiller curve which 
was introduced by Bers [7 l] and known in physical literature in connection with problems 
related to string theories [72]. This and related topics are summarized in Appendix A. 

Remark 6.25. Although the theory of knots and links was advocated for gravity for some 
time, e.g. Ref [73], the arguments presented above indicate the special role ofjibered knots 
and links in 2 + 1 gravity. Ref [74] contains prescriptions for construction of such knots 
and links. 

7. Discussion 

7.1. Quantization of 2 + 1 gravity 

The results presented in Parts I and II provide mainly classical description of 2+ 1 gravity. 
The quantum description may require computations which are based on the master equation, 
Eq. (4.13), of Part I. That is one has to consider some sort of the random walk on the mapping 
class group of some 2-dimensional surface of genus g > 1, possibly with punctures. To 
make these computations meaningful, it is essential to find a physically unambiguous way 
by which the transition amplitudes Wij in Eq. (4.13) of Part I can be calculated. To this 
purpose, we anticipate, that the physical results obtained by ‘t Hooft, e.g. see Refs. [75- 
781, and their development by Franzosi and Guadagnini [79] could be very helpful. In 
additionthe results of Appendix A suggest that the quantization could be achieved as well 
by methods of noncommutative geometry applied directly to the Teichmtiller space (more 
correctly, to the Bers slice). According to Ref. [80], “The quasi-conformal charts provide 
enough analysis to “quantize the manifold’ in the sense of constructing a Hilbert space and 
relevant operator replacing curvature. . . The involved Hilbert space theoretical data are of 
the same nature as those appearing in the transfer matrix theory of statistical mechanics 
and suggest a purely combinatorial approach. . . in the extended context of spaces with 
singularities.” In the physical language, the transfer matrix approach discussed in Ref. [80] 
can be easily recognized as Feynman-Wiener-Kac-type of path integral calculations. 
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7.2. Connections with the theory of dislocations and disclinations 

Connections between 2 + 1 gravity and the theory of defects and textures in solids 
was recently discussed by Katanaev and Volovich, Ref. [15] (Part I). These authors had 
noticed that the theory of wedge and edge dislocations as well as the linear disclinations in 
solids is isomorphic to the theory of 2 + 1 gravity of Deser et al. Using arguments which are 
completely different from those presented in Sections 4-6 of Part II, Katanaev and Volovich 
nevertheless had arrived at correct mass (Hopf) quantization condition, Definition 4.1. They 
missed, however, the sum rules of our Section 6 which could be obtained only with help of 
the theory of quadratic differentials. 5 

7.3. Connections with the theory of motions in classical and quantum billiards 

The problem of quantization of 2 + 1 gravity (as well as motion of point-like defects in 
the presence of wedge and edge dislocations, etc.) could be considered also from the point 
of view of classical and quantum motion of particles in billiards. The connection between 
the quadratic differentials and billiards is known to matematicians for some time, e.g. see 
Refs. [81-831. The related literature, e.g. Refs. [61,84] as well as Ref. [85], may be helpful 
as well. Since in the mathematical physics literature currently there is a strong interest 
in the detailed study of various mesoscopic systems [86], we anticipate that some “cross 
fertilization” between different domains of the same discipline (physics) could produce 
some unexpected results. 

7.4. Crumpling, fracture, brittleness 

In his book, Ref. [36], Thurston discusses the construction of what he calls a “hyperbolic 
paper”. This construction is based on the famous theorem by Hilbert. 

Theorem 7.1. There is no complete smooth St&ace embedded in Euclidean 3-space with 
the local intrinsic geometry of pseudosphere (e.g. see the “beak of the bird ” in Fig. 6). 

That is when the surface crumples, it necessarily develops the conical-like “beaks”. The 
mathematics of this crumpling process is discussed in Thurston’s famous lecture notes (e.g. 
see Ref. [20], Part I) and, surely, involves the train tracks. At the same time, in physics 
literature the process of crumpling of surfaces was recently discussed in Refs. [87,88]. 
The process of crumpling is closely related to brittleness and fracture. Depending upon the 
rigidity of surface, it may or may not “want” to crumple under the applied stresses. In the 
last case, we may observe some cracks (more exactly, the crack patterns, e.g. see Ref. [89], 
which eventually cause the disintegration of surface. The dynamical equations for such 
crack patterns are similar to the master equation, (4.13), Part I, for 2 + 1 gravity. Evidently, 

5 Very recently, Katanaev and Volovich had published another paper, “Scattering on dislocations and cosmic 
strings in the geometric theory of defects” (Ann. Phys. 271 (1999) 203-232). It contains many additional 
interesting applications. 
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one can get some additional insights into both fields if one is aware about the existence 
of the other. Since microscopically the cracks are caused by dislocations/disclinations, e.g. 
see Section 7.2, surely, one can think about the dynamics of 2 + 1 gravity in terms of the 
dynamics and topology of fracture [89-911. 

7.5. Meanders, the Temperley-Lieb algebra and the invariants of 3-manifolds 

In Part I, Section 5, Fig. 25, we have mentioned that any meander (or disconnected system 
of meanders) can be built by superposition of two arc configurations of the same order: one 
is being considered as the top while another as the bottom. In Ref. [36], Part I, it is shown 
that both the top and the bottom configurations can be obtained with help of the product 
of the Temperley-Lieb (TL) algebra generators (since these generators admit braid-like 
graphical representation) {ei } which obey the TL algebra TL, (6) given by: 

eiej = ejei if Ii - jl > 1, 

ef = 6ei, i = 1,. . . , m - 1, 

eieifiei = ei, i=l,...,m-1, 

where 6 is some constant. For the TL algebra composed of n elements, 1, ei , . . . , e,_ 1, the 
number of possible independent products of ei generators is given by the Catalan number, 
Eq. (3.9), Part I. Following Lickorish [92,93], one can think of space of these independent 
products as a vector space V, of dimension C,. Then, one can construct a bilinear form 

which in ordinary language means just a kind of a pairing between the top and the bottom arc 
configurations as discussed above. As it was shown by Lickorish, the above bilinear form 
plays the central role in constructing the algebraic invariants of 3-manifolds. Hence, use 
of the meanders allows to provide the alternative (to the Cherr-Simons [94]) formulation 
of the invariants of 3-manifolds. Additional connections between the TL algebra and the 
meanders could be found based on the notion of parenthesis [95]. The parenthesis are also 
associated with TL algebra. By definition, a parenthesis diagram is a word in the alphabet 
with three letters ??( and ), e.g. see p. 543 of Ref. [95]. Exactly the same three letter alphabet 
is used for the description of meanders, e.g. see p. 121 of Ref. [34] (Part I). We believe, that 
these connections deserve further study. 

Note added in proof. After this work was completed, we run across the only one article 
by Einstein written for the Scientific American (Sci. Am. 182 (4) (1950) 13-17) in which 
he wrote, e.g. see p. 16 (bottom), “The fact that the masses appear as singularities indicates 
that these masses themselves cannot be explained by symmetrical gik fields, or ‘gravita- 
tional fields’. Not even the fact that only positive gravitating masses exist can be deduced 
from the theory. Evidently a complete relativistic field theory must be based on a field of 
more complex nature. . ..” In the above, the word “positive” was emphasized by Einstein 
himself. We were mystified by the fact that the theory of quadratic differentials had begun 
its development just about the time when Einstein wrote these words. 
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Appendix A 

In this appendix we would like to provide an outline of the results recently obtained in 
mathematical literature which are related to the problem of compactification discussed in 
Section 6.4. The purpose of such presentation also lies in demonstration of nontriviality of 
the problem of knots/links relevance to 2 + 1 gravity. 

Let us begin with the following observations. The group of Mobius transformations r 
with real coefficients, PSL (2,R), is defined through the transformation law 

Y(Z) = s, ad-bc= 1. 64.1) 

The discontinuous subgroups (e.g. see Definition A.4.) of r are called Fuchsian groups. 
These subgroups are classified as elliptic (respectively,paruboZic and hyperbolic) if ja+d 1 -c 
2 (respectively, la + dl = 2 or ]a + dl > 2). Compare with appendix to Part I. 

A parabolic transformation is conjugate in r to the translation: z + z + 1, a hyperbolic 
transformation is conjugate to dilatation: z + hz for some h > 1. Let G E r and let 
n : H2 -+ H2/ G be some Riemann surface, then one can prove the following theorem. 

Theorem A.1. If H2/G is compact, then each y E G\{id) is hyperbolic 

Proof. Please, consult Ref. [29]. 0 

These results can be generalized to higher dimensions. For example, instead of H2 we 
can use H3 defined by Eq. (6.17), instead of PSL(2, R) we have to use PSL(2, C). Theorem 
A. 1 is extendable to H3 and is most useful if instead of H3 model we would use the Poincare 
sphere model. That is instead of an open disc D2 model with Sk being a “circle at infinity”, 
we would use an open ball B3 model with ,S& being a “sphere at infinity”. The hyperbolic 
transformations in D2 have fixed points on Sh. The hyperbolic transformations in B3 have 
fixed points on Sk. The hyperbolic polygon in H (or D2) is being replaced now with the 
hyperbolic polyhedron in H3 or B3. 
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Definition A.2. A Fuchsian group r is finitely generated if the corresponding hyperbolic 
polygon in H2 (or D2) has finite hyperbolic area. 

Definition A.3. A quasi-Fuchsian (Kleinian) group is geometrically finite if the corre- 
sponding hyperbolic polyhedron in H3 (or B3) has finitely many faces. 

Remark A.4 All known knots/links (except torus and satellite) have as their complements 
the hyperbolic manifolds associated with the geometricallyJinite Kleinian groups [36]. 

Let G E r be some element of geometrically finite Kleinian group. Consider the hyper- 
bolic distance dG(x) = d(x, G(x)). Thurston [36] proved the following theorem. 

Theorem A.5. G is hyperbolic if and only if the infimum of dG is positive. This infimum is 
attained along the line, which is unique axis for G. The endpoints of the axis are thefied 
points of G on Sk. 

Corollary A.6 If x E H3 (or B3), the limit set LG c Sk is the set of accumulation points 
of the orbit G, of x. LG is independent of the choice of x. 

Definition A.7. The domain of discontinuity Dr for a discrete group r is given by Dr = 
S&\Lr. A discrete subgroup of PSL(2, C) acting on Dr whose domain of discontinuity 
is nonempty is called Kleinian group. 

Definition A.& A group r acting on a locally compact space X is called properly dis- 
continuous if for every compact set K E X there are only finitely many y E r such that 

yKnK#0. 

Definition A.9. The Kleinian manifold iI? is defined by 

ti = (H3 U Dr)/l-‘. 

Let S be compact oriented surface of negative Euler characteristic. Let a,!$ denote the 
boundary of S and int S = S\aS be the interior of S. Analogously, for 3-manifolds we have 
the following definition. 

Definition A.10. The boundary of &!l is given by aA? = Dr/r. 

Corollary A.ll. Some Kleinian manifolds are bounded by a pair of Riemann surfaces X 
(bottom) and Y (top). There is a homeomorphism between i@ and intS x [0, l] which is 
compatible with marking of X by S and Y by S (where S is the same sueace as S but with 
reversed orientation). 

Proof. Please, consult Refs. [70,71,96]. 0 

Remark A.12. The marking of Riemann sur$ace X should be understood in the following 
sense. The Teichmiiller space Teich (S) classifies the conformal structures on intS in which 
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each boundary component corresponds to a puncture. A point in Teich(S) is specified by X 
which is conformaly equivalent to a punctured disk D2 (surely, in general, with more than 
one puncture). A homeomorphism f : intS + X which sends the orientation on S to the 
(canonical) orientation on X is called marking of X. 

Corollary A. 11. leads us to the most important generalization due to Bers [71]. It can be 
formulated in the form of the following theorem. 

Theorem A.13. Given two (in general, different) Riemann sur$aces X and Y of genus g 
and an orientation reversing map J between them, there is a uniquely determined (up 
to normalization) quasi-Fuchsian group G for which the bottom sur$ace is (conformaly 
equivalent to) X, the top, to Y and the associated involution X + Y is homotopic to J. 

Definition A.14. Consider the set of all quasi-Fuchsian groups whose bottom surface X is 
fixed. This set is called the Bers slice By based on X. The points in the Teichmtiller space 
are represented by the top surfaces and their relation (via involution) to the jxed bottom 
surface X. 

Remark A.15 The motion through the Bers slice is associated with the motion through 
various hyperbolic 3-manifolds whose bottom boundary component isBed but whose top 
varies. As a result of such motion, the top component may eventually degenerate in some 
way. 

Remark A.16. (a) The motion through the Bers slice is connected with the motion caused 
by the pseudo-Anosov sur$ace homeomorphisms (Theorem 6.20). (b) The degeneration of 
the Bers slice is associated with the boundary of the Teichmiiller space and formation of 
all kinds of spikes (cusps) on the top sutiace. 

Definition A.17. An end of 3-manifold is simply degenerate if it is topologically equivalent 
(homeomorphic) to the product S x R where S is the compact Riemann surface of negative 
Euler characteristic [97]. 

Definition A.18. 3-manifold is called geometrically tame if all of its ends are either ge- 
ometrically finite (Definition A.3) or simply degenerate (Definition A.17). 3-manifold is 
topologically tame if it is homeomorphic to the interior of compact 3-manifold. 

Definition A.19. The thick-thin decomposition of a hyperbolic manifold M [36] can be 
best understood by analyzing Fig. 6. The thin part of A4 is made of neigbourhoods of short 
geodesics and cusps isomorphic to pseudospheres. 

Theorem A.20. The complete hyperbolic manifold M has the jnite hyperbolic volume tf 
and only tf the thick part, M,,, is compact for all E > 0. 

Proof. Please, consult Ref. 36. 0 
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Remark A.21. This theorem is central for the whole chain of arguments which provide 
justification of knots/links existence in 2 + 1 gravity. Indeed, guided by this theorem, it is 
possible now to prove the following theorem. 

Theorem A.22. Let M = H3/r be infinite volume topologically tame hyperbolic 3- 
manifold. Then, if p is finitely generated subgroup of r, either 
(a) A? = H3/1’ is geometrically$nite, or 
(b) the thin part M,, has a geometrically injnite end I? such that the local isometry 

p : 16 -+ M is$nite one-to-one on some neigbourhood 6 of I?. 

Proof. Please, consult Ref. [98] and take into account Fig. 6 and Theorem A.20. 0 

Remark A.23. Although Theorem A.22 provides the desired result, it does not contain the 
constructive prescription as to how to obtain k (that is how tofind ? and to construct the 
quotient). The most spectacular results of Ref [70] address just this problem. They are the 
following: 
(a) the manifold 6l is homeomorphic to the hyperbolic 3-manifold which fibers over the 

circle; 
(b) the motion through the Bers slice which produces G is controlled by the functional 

equation (similar to the Feigenbaum-Cvitanovich equation for the chaotic maps [99]). 
The existence of fi depends on the existence of theJixed point for this equation. 

Remark A.24. In view of the Feigenbaum-Cvitanovich universal equation for maps of the 
interval, it is reasonable to expect some sort of universality in the knot /link structures 
(types) for 2 + 1 gravity. This universality should be associated with some special role 
played by fibered knots and links. 

Remark A.25 As is well known [ 1001 theAlexanderpolynomia1 A(t) forfibered knots/links 
is manic. That is theJirst (and the last) nonzero coefficients of A(t) are fl. Recently, it had 
been shown [ 1011 that such monicpolynomial could be obtained with help of Seberg-Witten 
invariantsfor a special class of 4-manifolds. These are, essentially, Kaluza-Klein-typeprod- 
ucts of 3-mantfolds and S’. Thus, description of 2 + 1 gravity could be also linked to the 
description of the associated I-manifolds. incidentally, the description of 3-manifolds in 
terms of the associated classes of 4-manifolds was originally proposed by Braam [ 1021. 
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